skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Phaneuf, Jacob R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Subterranean estuaries (STEs) are critical ecosystems at the interface of meteoric groundwater and subsurface seawater that are threatened by sea level rise. To characterize the influence of tides and waves on the STE microbial community, we collected porewater samples from a high‐energy beach STE at Stinson Beach, California, USA, over the two‐week neap‐spring tidal transition during both a wet and dry season. The microbial community, analyzed by 16S rRNA gene (V4) amplicon sequencing, clustered according to consistent physicochemical features found within STEs. The porewater community harbored relatively abundant Proteobacteria, Verrucomicrobiota, and Bacteroidota, as well as members of the archaeal DPANN superphylum and bacterial Candidate Phyla Radiation (CPR). Tidal conditions were not associated with microbial community composition; however, a wave overtopping event significantly impacted the beach microbiome. As a baseline for environmental change, our results elucidate the unique dynamics of a STE microbiome with unprecedented temporal resolution, highlighting the transport of cellular material through beach porewater due to waves. 
    more » « less